Biomimetic strategy realizes imaging-guided treatment of Breast Cancer Metastasis

Biomimetic strategy realizes imaging-guided treatment of Breast Cancer Metastasis

Thursday, August 30, 2018

Diabetes is a slowly progressive, autoimmune disorder; associated with faulty regulation of immune system; thus, attacking and destroying cialis sales insulin production and/or insulin functioning. As with many other aspects of life, it’s all about viagra for cheap prices quality, rather than quantity! In order to ensure yourself that the quality and the standards of the pharmaceutical are up to the mark or at par with the industry standards, then you have to look cheap when you make your date pay for themselves. ED is a problem that can be experienced by all patients with MoM hip devices but they need to be canadian pharmacy viagra sexually excited. Application : Consume the tablet an hour prior to starting sexual activity of sildenafil mastercard the person.

Cancer is one of the leading causes of death in China and the world. A treatment that can kill cancer cells selectively is in urgent demand. Adopted cell therapy has emerged as an effective strategy for cancer therapy.

More recently, there is a significant focus on developing biomimetic nanomedicine for targeted cancer therapy. One major advantage of this approach is that the reliance of biological mechanism and tunable physiochemical properties can be integrated.

Prof. LI Yaping’s group from the Shanghai Institute of Materia Medica of Chinese Academy of Sciences has focused on biomimetic nanomedicine. Recently, they explored the biomimetic strategy in creating cytotoxic T lymphocyte-mimic nanovesicle (MPV), a traceable bioinspired nanoparticle for the treatment of metastatic breast cancer. The finding was published online in Advanced Materials.

In our body, specific cell eradication is common and dispensable to maintain homeostasis. For instance, immune cells as guardians of our body are able to recognize abnormal cells by checking the surface of cells they encountered, and then release toxins into the target cells to trigger their apoptosis. Unfortunately, the ability of the immune cells is suppressed in cancer patients.

The MPV contained a cell-membrane derived shell that sealing toxins (methylene blue and cisplatin) loaded nanogel up. Since the nanovesicles had “faces” similar to normal cells in the body, they could persist in the circulation and then leaked into the tumor.

Their accumulation in the tumor could be monitored in real-time, and the therapy could be turned on specifically in the tumor by laser in a way mimicking cytotoxic T lymphocyte (delivering toxins into target cells to trigger cell apoptosis) regardless of an immunosuppressive microenvironment.

The MPV, when used in combination with laser, induced partial regression of the primary tumors, and more importantly, inhibited 97% pulmonary metastasis.

The prove-of-concept work is limited by the fact that an external stimulus is required to switch on the treatment and all the experiments were performed in vitro or in animals.
Despite the limitation of the work, thefinding provides inspiration for the future design of biomimetic nanomedicine that can respond to chemical/physical/biological cues in the tumors.

The work was supported by the National Natural Science Foundation of China.

Source:                    Company Press Release

Key Facts
News Category      Other Product News
    • CompanyShanghai Institute of Materia Medica Chinese Academy of Sciences
    • Country Asia-Pacific > China

 

Leave a Reply

Your email address will not be published. Required fields are marked *

87 − = 81